- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Saito, Makoto (2)
-
Argüello-Miranda, Orlando (1)
-
Braakman, Rogier (1)
-
Camagna, Maurizio (1)
-
Chiba, Sotaro (1)
-
Cooper, Zachary_S (1)
-
DeMers, Michelle_A (1)
-
Dyhrman, Sonya (1)
-
Eren, A_Murat (1)
-
Kato, Hiroaki (1)
-
Lopez, Paloma_Z (1)
-
McIlvin, Matthew_R (1)
-
Merritt, Bryn A (1)
-
Miller, Samuel (1)
-
Moran, Mary_Ann (1)
-
Pring, Sreynich (1)
-
Rodriguez, Lidimarie_T (1)
-
Sato, Ikuo (1)
-
Schechter, Matthew_S (1)
-
Schroer, William_F (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber. Treatment of cucumber with Oligo-Mix promoted root germination and plant growth, along with increased chlorophyll contents in the leaves. Oligo-Mix treatment also induced typical defense responses such as MAP kinase activation and callose deposition in leaves. Pretreatment of Oligo-Mix enhanced disease resistance of cucumber leaves against pathogenic fungiPodosphaera xanthii(powdery mildew) andColletotrichum orbiculare(anthracnose). Oligo-Mix treatment increased the induction of hypersensitive cell death around the infection site of pathogens, which inhibited further infection and the conidial formation of pathogens on the cucumber leaves. RNA-seq analysis revealed that Oligo-Mix treatment upregulated genes associated with plant structural reinforcement, responses to abiotic stresses and plant defense. These results suggested that Oligo-Mix has beneficial effects on growth and disease resistance in cucumber, making it a promising biostimulant for agricultural application.more » « lessFree, publicly-accessible full text available December 28, 2025
-
Veseli, Iva; DeMers, Michelle_A; Cooper, Zachary_S; Schechter, Matthew_S; Miller, Samuel; Weber, Laura; Smith, Christa_B; Rodriguez, Lidimarie_T; Schroer, William_F; McIlvin, Matthew_R; et al (, Scientific Data)Abstract The remarkable pace of genomic data generation is rapidly transforming our understanding of life at the micron scale. Yet this data stream also creates challenges for team science. A single microbe can have multiple versions of genome architecture, functional gene annotations, and gene identifiers; additionally, the lack of mechanisms for collating and preserving advances in this knowledge raises barriers to community coalescence around shared datasets. “Digital Microbes” are frameworks for interoperable and reproducible collaborative science through open source, community-curated data packages built on a (pan)genomic foundation. Housed within an integrative software environment, Digital Microbes ensure real-time alignment of research efforts for collaborative teams and facilitate novel scientific insights as new layers of data are added. Here we describe two Digital Microbes: 1) the heterotrophic marine bacteriumRuegeria pomeroyiDSS-3 with > 100 transcriptomic datasets from lab and field studies, and 2) the pangenome of the cosmopolitan marine heterotrophAlteromonascontaining 339 genomes. Examples demonstrate how an integrated framework collating public (pan)genome-informed data can generate novel and reproducible findings.more » « less
An official website of the United States government
